
REVIEWS

For thousands of years, rabbis have laboured over the
text of the Torah, seeking to make this cryptic, uneven
and internally contradictory text into a coherent sys-
tem of law, and storing this commentary into an anno-
tated version of the text, known as the Talmud. Over
time, the amount of annotation in the Talmud has
greatly exceeded the original text — each line of the
Torah is now surrounded by layers of commentary in
an onionskin fashion.

So it is with the genome. The past decade has seen
the completion of numerous whole-genome-
sequencing projects, beginning with microbial
genomes1–3 and continuing with the eukaryotic
species Saccharomyces cerevesiae (yeast)4,
Caenorhabditis elegans (worm)5, Drosophila
melanogaster (fruitfly)6, Arabidopsis thaliana (mustard
weed)7, and culminating most recently with the
announcement by public and private groups of WORK-

ING DRAFT versions of the human genome8,9. Other
genomes are either on the way or contemplated,
including mouse, rat, zebrafish, pufferfish and non-
human primates.

Like the torah, the genome represents a mixture of
evolutionary ‘intent’ (insofar as natural selection can
be said to intend anything) and historical accident.
Although there is assuredly an underlying rhyme and
reason to the genome, there is also much that is hap-
hazard. Fragments of viral and prokaryotic genomes
that infected ancestral individuals, mobile elements,

pseudogenes and repetitive elements, are all traps (or
opportunities) waiting to surprise the genome scien-
tist. More importantly, principal aspects of the basic
organization of the genome are still quite murky: the
regulation of alternative splicing, the control of tran-
scription, the role of intergenic material, and the
function of many non-coding RNAs, to name just a
prominent few.

The attention of the sequencing community is
now focused on genome annotation — the process of
taking the raw DNA sequence produced by the
genome-sequencing projects and adding the layers of
analysis and interpretation necessary to extract its
biological significance and place it into the context of
our understanding of biological processes. Genome
annotation itself is a multi-step process, falling more
or less neatly into three categories: nucleotide-level,
protein-level and process-level annotation (FIG. 1).

This review surveys the various ways that genome
annotation is carried out, the techniques used and
the diverse sociological models that have been adopt-
ed to organize the annotators.

Nucleotide-level annotation
Yet another eukaryotic genome is complete, and
someone hands you a big unannotated FASTA FILE

(three billion base pairs in the case of a mammalian
species, or the content of about five CD-ROMs).
What now?

GENOME ANNOTATION:
FROM SEQUENCE TO BIOLOGY
Lincoln Stein

The genome sequence of an organism is an information resource unlike any that biologists
have previously had access to. But the value of the genome is only as good as its annotation. 
It is the annotation that bridges the gap from the sequence to the biology of the organism. 
The aim of high-quality annotation is to identify the key features of the genome — in particular,
the genes and their products. The tools and resources for annotation are developing rapidly,
and the scientific community is becoming increasingly reliant on this information for all aspects
of biological research.

WORKING DRAFT

A ‘working draft’ sequence has
come to mean a genomic
sequence before it is finished.
Working draft sequences
contain multiple gaps,
unrepresented areas and
misassemblies. In addition, the
error rate of working draft
sequence is higher than the 1 in
10,000 error rate that is
standard for finished sequence.

FASTA FILE

A common file format used for
the storage and transfer of
sequence data. It contains raw
DNA or protein sequence, but
no annotation information.
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Finding genomic landmarks. Finding landmarks is a rel-
atively straightforward task. Short sequences, such as
PCR-based genetic markers, can be identified rapidly
using the e-PCR program10. Longer sequences, such as
restriction-fragment length polymorphism markers, can
be found using BLASTN11, SSAHA12 or another rapid
sequence-similarity searching algorithm. (See BOXES 1

and 2 for information about the resources and software
tools discussed in this article.) 

In the case of the human working draft, an impor-
tant bridging activity was the integration of the
sequence with the cytogenetic map, much beloved by
clinical geneticists and hunters of disease genes. In this
case, the human cytogenetic map was integrated with
the genome by systematic fluorescence in situ hybridiza-
tion mapping of bacterial artificial chromosome (BAC)
clones against metaphase chromosomes13. The assembly
of the fly genome was aided immeasurably by in situ
hybridization of each BAC in the physical map to poly-
tene chromosomes, providing bridges between the cyto-
genetic and physical maps with an accuracy of a few
hundred kilobases6.

Gene finding. Gene finding is the most visible part of
this phase. In small prokaryotic genomes, gene find-
ing is largely a matter of identifying long open reading
frames (ORFs). Even here, however, ambiguities arise
if long ORFs overlap on opposite strands, and the true
coding region must be sorted out. As genomes get
larger, gene finding becomes increasingly tricky. The
main issue is the signal-to-noise ratio. In a prokaryot-
ic genome, such as Haemophilus influenzae, 85% of its
1.8-Mb genome is in coding regions. The correspond-
ing number in yeast is not much lower, at 70%. For
these genomes, ‘calling genes’ is an exercise in running
a computer program that carries out a six-frame
translation and identifies all ORFs that are longer
than a chosen threshold. But even in these small
genomes, finding genes has not been entirely effort-
less. The number of predicted yeast genes, for exam-
ple, took several years to settle down, and there are
still several short ORFs that have an uncertain status
as bona fide genes.

In the fly and the worm, however, less than 25% of
the genome is in coding regions, and the number falls to
just a few per cent in humans. The process of finding
genes is further complicated by the presence of splicing
and alternative splicing. In the human genome, a typical
exon is 150 bp and a typical intron is several kilobases,
and there is no clear delineation between the intergenic
regions that separate adjacent genes and the intragenic
regions that separate exons. Defining the precise start
and stop position of a gene and the splicing pattern of
its exons among all the non-coding sequence is like
finding a very small and indistinct needle in a very large
and distracting haystack.

Several sophisticated software algorithms have
been devised to handle gene prediction in eukaryotic
genomes, including GENSCAN14, Genie15,
GeneMark.hmm16, Grail17, HEXON18, MZEF19,
Fgenes20 GeneFinder (P. Green, unpublished data)

Mapping. The first step in genome annotation is to
identify the punctuation marks. Where are the
known genes, genetic markers and other landmarks
previously identified by genetic, cytogenetic or RADIA-

TION HYBRID MAPPING? Where are the tRNAs, rRNAs and
other non-translated RNAs? Where are repetitive ele-
ments? Is there evidence for ancient duplications in
the genome and, if so, where are the end points of the
putative duplicated regions? All these questions are
really an extended form of physical mapping,
attempting to convert the terra incognita of raw DNA
sequence into a set of easily recognized landmarks
and reference points.

Along with ‘gene finding’, the principal activity of
this phase of annotation is identifying and placing all
known landmarks into the genome. For example,
during nucleotide-level annotation, annotators 
will search for known genetic markers, radiation
hybrid markers and CLONE ENDS in the sequence, and
place them; they thereby form bridges between the
genomic sequence and pre-existing genetic, radiation
hybrid and physical maps. This provides a path to
connect the pre-genomic literature, which is often
based on such landmarks, with post-genomic
research.

RADIATION HYBRID MAPPING

An experimental technique that
uses radiation-induced
chromosomal breakpoints in
somatic-cell hybrids to map the
positions of sequence tagged
sites (STSs).

CLONE ENDS

Genomic sequencing projects
typically sequence the ends of
bacterial artificial chromosome
and plasmid clones, in addition
to shotgun sequencing entire
clones. During assembly, the
clone end sequences are used to
create a scaffold on which the
genome sequence is pieced
together.

X

Where?
Nucleotide-level annotation

What?
Protein-level annotation

How?
Process-level annotation

Figure 1 | The three layers of genome annotation:
where, what and how?
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However, the process of deriving a complete gene
model from one or more sequence similarities is not
nearly as straightforward as it might sound. For one
thing, pseudogenes are a common feature of eukary-
otic genomes. Many similarity-based gene-prediction
algorithms require evidence that the gene is spliced
and that the splices maintain an in-phase ORF.
However, this criterion biases gene prediction against
single-exon genes. And there are many additional
problems: ESTs are fragmentary and might suffer
from several artefacts, including contamination with
genomic DNA, chimerism and lane-tracking errors
during automated sequencing; cDNA sequences
might contain repetitive elements that will cause spu-
rious genomic matches; similarities to proteins in
other species might suffer from evolutionary diver-
gence or the orthologue–paralogue problem (dis-
cussed in more detail below); and the presence of
alternative splicing considerably complicates the
interpretation of alignments between genomic DNA,
cDNAs and ESTs. More seriously, however, similarity
data is never complete. Even the most comprehensive
EST projects will miss low-copy-number transcripts
and those transcripts that are expressed only tran-
siently or under unusual conditions.

The current trend in gene prediction is to make as
much use of sequence-similarity data as possible. The
latest generation of gene-prediction algorithms, such as
Grail/Exp, Genie EST and GenomeScan24, combine ab
initio predictions with similarity data into a single
probability model. In Reese et al.22, the algorithms that
took similarity data into account generally outdid those
that did not take them into account.

Because of the newness of the combined algo-
rithms, however, most genome-wide gene-annotation
systems so far have run sequence-similarity searches
and ab initio gene predictors separately, then com-
bined and reconciled the predictions later. In the case
of the worm genome, this reconciliation was initially
carried out by curators who manually examined each
gene prediction in the context of matching ESTs and
homologues from other species5. More recently, the
process has been accelerated significantly by automat-
ed procedures for reconciling EST alignments with
gene predictions (ACEmbly, J. Thierry-Mieg, unpub-
lished data and REF. 25), and by systematically PCR-
amplifying a cDNA library using primer pairs that
span predicted genes26.

In the case of the human working draft, both
Celera8 and the public sequencing consortium9 devel-
oped automated rules-based gene-prediction systems
that attempted to mimic how a human annotator
might examine a sequence. The Celera system, a pro-
prietary software package called Otto, gives sequence
similarity the highest priority, drawing evidence that a
region is transcribed from sequence similarities found
in the RefSeq library of well-characterized human
genes27, from the Unigene set of human ESTs28, and
from SWISS-PROT29 and other protein databases. Otto
then uses GENSCAN to find and refine the splicing
pattern of the predicted gene.

and HMMGene21. These algorithms typically consist
of one or more SENSORS that attempt to adduce the
presence of a gene feature from motifs or statistical
properties of the DNA. For example, as transcribed
regions are associated with (G+C)-rich regions, a sen-
sor for transcriptional start sites might measure the
G+C content of the region being scanned. A sensor
for splice sites compares the current region to splice
consensus sequences.

Some gene predictors stop with the prediction of a
single feature, such as the exon predictors HEXON
and MZEF. Most, however, attempt to use the output
of several sensors to generate a whole gene model, in
which a gene is defined as a series of exons that are
coordinately transcribed. This is typically done with
NEURAL NETWORKS (Grail), a RULE-BASED SYSTEM

(GeneFinder) or, increasingly favoured, with a HIDDEN

MARKOV MODEL (HMM) (GenScan, Genie, HMMGene,
GeneMark.hmm and Fgenes). The HMM approach
has the advantage of explicitly modelling how the
individual probabilities of a sequence of features are
combined into a probability estimate for the whole
gene (FIG. 2).

Despite great progress, however, gene prediction
entirely based on DNA analysis is still far from perfect.
In the recent comparison of gene-prediction pro-
grams reported by Reese et al.22, the authors of nearly
a dozen algorithms were asked to predict genes in two
well-annotated regions of the fruitfly genome. The
best algorithms could achieve sensitivities (a measure
of the ability to detect true positives) and specifities (a
measure of the ability to discriminate against false
positives) of ~95 and ~90%, respectively, when asked
to predict whether a particular nucleotide is in an
exon. However, accuracy dropped off rapidly if the
criterion was changed to calling the boundaries of an
exon correctly, and still further if the algorithm was
required to predict the entire gene structure correctly.
Under the latter requirements, the best gene predic-
tors had a sensitivity of 40% and a specificity of 30%,
meaning that most of the genes predicted by these
programs contain errors ranging from an incorrect
exon boundary to a missed or phantom exon.
Between 5 and 15% of genes were missed entirely in
this contest.

Although there has not yet been an equivalent com-
parison of gene-prediction programs on the human
genome, it is safe to assume that these programs will
fare less well because of the lower signal-to-noise ratio.
As expected, one study showed that the GENSCAN
accuracy dropped rapidly as intergenic lengths in a sim-
ulated data set increased23.

Fortunately, we do not have to rely completely on 
AB INITIO GENE PREDICTION programs. The similarity of a
region of the genome to a sequence that is already
known to be transcribed is the single most powerful
predictor of whether a sequence is transcribed. A
nucleotide match to a cDNA, expressed sequence tag
(EST), or even a BLASTX match to a gene in another
species is good evidence that a region belongs to 
a gene.

SENSORS

An algorithm specialized to
identify a feature of a sequence,
such as a possible splice site.

NEURAL NETWORK

Neural networks are analytical
techniques modelled after the
(proposed) processes of
learning in cognitive systems
and the neurological functions
of the brain. Neural networks
use a data ‘training set’ to build
rules that can make predictions
or classifications on data sets.

RULE-BASED SYSTEM

A type of computer algorithm
that uses an explicit set of rules
to make decisions.

HIDDEN MARKOV MODEL

A type of computer algorithm
that represents a system as a set
of discrete states and transitions
between those states. Each
transition has an associated
probability. Markov models are
‘hidden’ when one or more of
the states cannot be directly
observed.

AB INITIO GENE PREDICTION

A class of software that attempts
to predict genes from sequence
data without the use of prior
knowledge about similarities to
other genes.
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RNAs. rRNAs can be found easily by similarity
searching, but the rest are tricky, because of both
their short length and their nucleotide diversity.
tRNAs are amenable to de novo prediction through
algorithms that search for characteristic structural
signatures, such as hairpin formation30–32. The most
widely used tRNA prediction program is tRNAScan-
SE32, which combines several algorithms to identify
tRNAs with high accuracy in good running times. It
can also distinguish active tRNAs from tRNA
pseudogenes. This program was used during the
recent annotation of the public human sequence to
identify 497 tRNAs and 324 putative pseudogenes9.

Other non-coding RNAs, such as telomerase RNA
and the U1–12 series of spliceosome RNAs, can be
identified by sequence similarity, but there are likely
to be many non-coding RNAs that have not yet been
identified33. Just coming online now are new algo-
rithms based on identifying characteristic patterns of
mismatched base pairs in cross-species alignments,
for example mouse and human (S. Eddy, personal
communication). Preliminary results indicate that
there might be hundreds of previously unrecognized
non-coding RNAs in the genome. It will be fascinat-
ing to learn the role and function of non-coding
RNAs discovered in this way.

The situation is similar with regulatory regions
(reviewed in REF. 34). A relatively small number of
transcriptional-factor-binding sites have been identi-
fied by classical experimental methods. The
sequences for these sites are available in curated data-
bases such as TRANSFAC and PROSITE, and can be
found in genomic sequence by applying similarity
search methods that are specialized for short motifs.
However, as with the non-coding RNAs, the number
of known regulatory regions is almost certainly a
small fraction of what is out there.

The development of algorithms to search for regu-
latory regions is a hot research topic in bioinformatics.
One popular class of algorithms, exemplified by the
MEME program35, searches for motifs in nucleotide
and protein sequences that occur more often than
would be predicted by chance. However, the predic-
tions from such algorithms are strongly dependent on
the care with which the input sequences are chosen,
and are typically used strictly as the starting point for
experimental confirmation.

However, it is widely anticipated that nucleotide-
level similarity comparisons among two or more
related species will allow us to identify control and
regulatory regions with notably greater power and
accuracy. When orthologous genomic regions of two
closely related species, such as C. elegans and
Caenorhabditis briggsae36,37, mouse and human38,39,
and human and chimpanzee40, are examined, con-
served blocks of nucleotide similarity upstream from
the transcriptional start site are commonly found,
indicating possible evolutionarily conserved regulato-
ry regions. With the mouse genomic sequence now
becoming available, there should be a great explosion
in such studies over the next few years.

The Human Sequencing Consortium, based on
the Ensembl gene annotation system9, took almost
the reverse approach, beginning with ab initio gene
predictions from GENSCAN and then strengthening
the predictions using nucleotide and protein similari-
ties. These predicted gene models were merged and
reconciled with the output of Genie EST, and finally
merged with the contents of the RefSeq library.

Although the two groups approached the gene find-
ing problem from different directions, both gave greater
weight to cDNA and EST alignments than to ab initio
gene prediction. So, it is not too surprising that the esti-
mates from both groups of the number of genes were
very close, ~30,000.

Non-coding RNAs and regulatory regions. There is
much more to the genome than coding regions. On
the cutting edge of nucleotide-level annotation is the
search for non-coding RNAs and transcriptional reg-
ulatory regions. Non-coding RNAs include tRNAs,
rRNAs, small nucleolar RNAs and small nuclear

Box 1 | Resources and tools I

The following list provides brief descriptions of some of the software tools and
resources mentioned in the article. Online, links are provided to these resources from
this box, and from the text.

BLASTN, BLASTX,
BLASTP, PSI-BLAST . . . . . . . http://www.ncbi.nlm.nih.gov/BLAST/
This family of sequence-similarity search tools allows you to rapidly search a query
protein or nucleotide sequence against a large database of sequences, to identify
sequences that are similar to the search sequence.

Ensembl . . . . . . . . . . . . . . . . . . http://www.ensembl.org
This web site, a joint project of the European Bioinformatics Institute and the Sanger
Centre, seeks to make available a high-quality, consistent set of annotations on the
human and mouse genomes.

e-PCR . . . . . . . . . . . . . . . . . . . . http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi
BLAST does not work well with short sequences, such as PCR primers. The ePCR
program was developed to search rapidly for a primer pair (using their sequences and
known physical separation) in a large sequence, such as a genome.

FlyBase . . . . . . . . . . . . . . . . . . . http://www.flybase.org/
A fully realized model organism system database, presenting curated annotations on
the Drosophila melanogaster genome, as well as rich information on the genetics of the
organism, mutant strains and molecular resources.

GeneMark.hmm. . . . . . . . . . . http://genemark.biology.gatech.edu/GeneMark/
Another gene-prediction program that uses hidden Markov models (HMMs). The
online version supports numerous eukaryotic and prokaryotic genomes.

Genie . . . . . . . . . . . . . . . . . . . . http://www.fruitfly.org/seq_tools/genie.html
The gene-prediction program used to annotate genes in Drosophila melanogaster. The
online version has been trained for human and Drosophila sequence.

GENSCAN. . . . . . . . . . . . . . . . http://genes.mit.edu/GENSCAN.html
This is probably the most widely used gene-prediction program. It uses HMMs to
predict the presence of a gene given the raw DNA sequence. The online version
provides prediction services for vertebrates, Arabidopsis thaliana and maize.

Grail . . . . . . . . . . . . . . . . . . . . . http://compbio.ornl.gov/Grail-1.3/
One of the oldest gene-prediction programs still in use, this software uses a neural
network to predict genes. The online version provides gene-prediction services for
human, mouse, Arabidopsis, Drosophila and Escherichia coli sequences.
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However, repetitive elements are more than a nui-
sance for genome assembly. The study of repeats is
itself a fascinating discipline, which has revealed a vir-
tual bestiary of repeat families, each with unique dis-
tinguishing features and survival strategies. There
were several surprises involving repetitive elements
during the annotation of the human genome. One of
the more interesting came from the analysis of the
apparent age of representatives of each family, in
which age was determined by counting the mutations
that had accumulated in the representative relative to
the canonical sequence. This analysis9 detected a
marked and unexplained decline in transposable ele-
ment activity over the past 33–50 Myr of human evo-
lution. Another unexpected outcome of this annota-
tion activity was the finding of a shift of older
ALU-type transposable elements from (A+T)-rich
regions, which are favoured by the transposition
mechanism, to gene-rich (G+C)-rich regions — a
finding that raises the possibility that Alu elements are
subject to positive selection. Clearly, much is to be
gained from a closer examination of this ‘junk’ DNA.

Mapping segmental duplications. Distinct from identi-
fying and mapping repetitive elements is the identifica-
tion of large segmental-duplications in the genome.

One of the big surprises that emerged during the
sequencing of the mustard weed genome was evidence
for several distinct large-scale duplication events in the
organism’s past7,41. Over 60% of the predicted ORFs in
Arabidopsis match a paralogue somewhere else in the
genome, and these duplicated genes are organized into
large syntenic blocks that might be several hundred
ORFs long (FIG. 3).

An analysis of the apparent age of these duplications,
on the basis of sequence divergence, indicates four dis-
tinct segmental-duplication events in the genome,
occurring between 100 and 200 Myr ago41 — a period of
time that spans the diversification of the ANGIOSPERMS.
This helps to explain the paucity of conserved synteny
between the genetic maps of rice (a MONOCOTYLEDON) and
Arabidopsis (a DICOTYLEDON). So, the study of segmental
duplications can reveal important information about the
evolutionary history of a species.

The human genome itself has blocks of segmental
duplication, although none so marked as mustard weed.
The Celera and sequencing consortium papers indicate
that 5% of the genome might be involved in ancient
segmental duplications, and there is preliminary evi-
dence that the true number might be significantly high-
er (E. Eichler, personal communication).

Mapping variations. The last principal activity of
nucleotide-level annotation is identifying and map-
ping polymorphisms. Single-nucleotide polymor-
phisms (SNPs) have emerged as a valuable tool for
genetic mapping, population genetics studies and
clinical diagnosis42.

SNPs had a prominent role in the recent annota-
tions of the human genome8,43. In principle, it is easy
to identify SNPs by simply aligning the genomic

Identifying repetitive elements. Repetitive, or inter-
spersed, elements are an important feature of eukaryotic
genomes, and indeed account for a large proportion of
the variation in genome size. In the human genome, the
largest genome sequenced so far, 44% of nucleotides are
contributed by repetitive elements9. The repetitive ele-
ments are derived from active transposable elements and
are frequently dismissed as parasitic or ‘junk’ DNA.

Identifying and mapping repetitive elements actually
starts well before any other annotation activities begin,
because of the need to identify and exclude repetitive
regions during the genome assembly process. Known
repetitive elements are masked from the sequence using a
program such as RepeatMasker (A. F.A. Smit and P. Green,
unpublished data), or are identified and excluded by mea-
suring the apparent coverage of the region being assem-
bled. Once a family of repetitive elements is identified, it is
relatively straightforward to find other members of the
family by nucleotide-based sequence-similarity searching.

ALU SEQUENCE

A dispersed, intermediately
repetitive DNA sequence found
in the human genome in about
300,000 copies. The sequence is
about 300 base pairs long. The
name Alu comes from the
restriction endonuclease (AluI)
that cleaves it.

ANGIOSPERM

Flowering seed plant.

MONOCOTYLEDON

One of the two principal classes
of flowering plant, monocots
are characterized by a single
cotyledon (primitive leaf) in
the embryonic plant. Maize,
rice, wheat and other grasses are
common monocots.

Box 2 | Resources and tools II

HMMER . . . . . . . . . . . . . . . . . . . . . http://hmmer.wustl.edu/
HMMER is a protein-similarity search engine. It uses HMMs to provide greater
sensitivity when searching for evolutionarily distant proteins. It is more accurate than
BLASTP, but notably slower.

HMMGene . . . . . . . . . . . . . . . . . . . http://www.cbs.dtu.dk/services/HMMgene/
Another HMM-based gene-prediction program. This one provides options for
vertebrate and Caenorhabditis elegans sequences.

InterPro . . . . . . . . . . . . . . . . . . . . . . http://www.ebi.ac.uk/proteome/
The InterPro database is on its way to becoming the prime resource for protein-level
annotation.

Proteome, Inc. . . . . . . . . . . . . . . . . http://www.proteome.com/
An example of the ‘cottage industry’ approach to annotation. The curated databases at
this site include protein databases for C. elegans, yeast, human and mouse.

RefSeq and LocusLink, National Center for Biotechnology
Information (NCBI) . . . . . . . . . . . http://www.ncbi.nlm.nih.gov/
In addition to the GenBank database of nucleotide and protein sequences, and the
PubMed bibliographic search service, NCBI hosts RefSeq and LocusLink, two curated
databases of nucleotide- and protein-level annotation.

RepeatMasker. . . . . . . . . . . . . . . . . 
http://www.genome.washington.edu/uwgc/analysistools/repeatmask.htm
RepeatMasker is the most widely used tool for identifying and masking repeats in
genomes. It operates using a large database of repeat consensus sequences previously
identified in various eukaryotic species.

SSAHA. . . . . . . . . . . . . . . . . . . . . . . http://www.sanger.ac.uk/Software/analysis/SSAHA/
SSAHA is a new, fast algorithm for searching for nearly identical nucleotide
sequences. It makes it possible to quickly match a partial DNA sequence to a large
genome, such as in the human.

SWISS-PROT and
SWISS-PROT TrEMBL . . . . . . . . http://www.ebi.ac.uk/swissprot/
The SWISS-PROT database is a high-quality, curated database of protein sequences
from all species. SWISS-PROT TrEMBL is an automated merge of SWISS-PROT with
predicted proteins from genomic sequencing and other sequencing projects. A rule-
based system minimizes the amount of redundancy and errors in the merged
database.

UCSD Genome Browser . . . . . . . http://genome.ucsc.edu/
This web site, run by graduate student Jim Kent, presents an integrated view of
annotations on the human genome contributed by numerous groups.
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Sequence data for SNP calling can come from var-
ious sources. In the case of C. elegans, SNPs have been
identified by shotgun sequencing DNA from various
wild-type isolates (C. elegans SNP data45) and then
aligned to the reference genomic sequence. In the
case of the human sequence, SNPs have been called
by aligning ESTs to genomic sequence and by pooling
and shotgun sequencing the genomic DNA of a panel
of unrelated individuals, followed by alignment of
the sequence data to the human working draft43.
Numerous SNPs came from within the human work-
ing draft itself by identifying variations in regions of
clone overlap. In the case of the Celera draft, a total of
five unrelated donors were used to create the libraries
used for shotgunning and assembly. In the case of the
public consortium sequence, 75% the sequence 
was contributed by a single individual, and the poly-
morphisms found were presumably because of
heterozygosity.

Annotation of human SNPs have yielded some
unexpected results. The most intriguing finding is that
the distribution of SNPs departs significantly from what
would be predicted under the standard population
genetics models. Some regions of the genome contain
SNP hot spots and others are SNP poor. What combina-
tion of historical, structural or selective pressures are
responsible for this uneven distribution, and how is it
related to other factors, such as the distribution of genes
and repetitive elements?

Protein-level annotation
After asking ‘where’, genome annotators ask ‘what’.
This stage of genome annotation seeks to compile a
definitive catalogue of the proteins of the organisms,
to name them and to assign them putative functions.

H. influenzae has 1,709 genes, yeast has ~5,600,
and fly, worm, mustard weed and human have
~13,000, ~19,000, ~24,000 and >30,000, respectively.
Of these gene sets, only a small fraction correspond to
known, well-characterized proteins. Faced with
numerous proteins of unknown function, annotators
generally begin by classifying them into more man-
ageable groups or protein families, and by using 
similarities to better-characterized proteins of
other species.

This process sounds easier than it is in practice.
The intrinsic problem comes from the nature of the
evolutionary process. During the evolution of a pro-
tein family, an ancestral protein is duplicated one or
more times, and the copies diverge, forming a family
of related proteins known as paralogues. However,
similarity in function does not inevitably follow from
sharing a common ancestor, and there are many cases
of two protein family members that have strikingly
divergent functions. For example, the lens crystallins
are derived from a family of proteins that ordinarily
function as enzymes and CHAPERONINS46,47. Further
complicating the issue is the proclivity of genes to
pick up or lose functional domains during the course
of evolution, creating chimeric proteins that share two
or more unrelated ancestors48.

sequences of two or more individuals and finding
places where the sequence of one diverges from the
other. In practice, SNP-calling algorithms must distin-
guish biological variations from those due to sequenc-
ing errors. Several algorithms have been developed to
do this12,43,44; each uses sequence quality data to make a
probability estimate.

DICOTYLEDON

One of the two principal classes
of flowering plant, dicots are
characterized by two cotyledons
(primitive leaves) in the
embryonic plant. Tomatoes,
maple trees and mustard are
common dicots.

CHAPERONINS

A class of ring-shaped, heat-
shock proteins that have a key
role in protein folding and
protection from stress.
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Figure 2 | A hidden Markov model explicitly models the
probabilities for the transition from one part of a gene
to another. In this model, used by the GENSCAN algorithm,
each circle or diamond represents a functional unit in the
gene. For example, Einit

– is the initial exon and Eterm
– is the last.

The arrows represent the probability of a transition from one
part of a gene to another. The algorithm is ‘trained’ by
running a set of known genes through the model and
adjusting the weights of each transition to reflect realistic
transition probabilities. Thereafter, test sequence data can be
run through the model one base position at a time, and the
model will read out the probability of a gene being present at
that position. The states that occur below the dashed line
correspond to a gene in the reversed strand, and thus are
symmetric with those above the line. E, exon; I, intron; UTR,
untranslated region; pro, promoter. (From REF. 14 © Academic
Press Ltd (1997).)
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bibliographic references, descriptions of the function
and biological role of the protein, protein family
assignments and pointers to structural data, if avail-
able. Because of its curated nature, the protein
sequences contained in SWISS-PROT are likely to be
of high reliability.

However, the accelerated rate of genome sequencing
has outstripped the speed of the curators of SWISS-
PROT. This gap is filled by SWISS-PROT TrEMBL, an
automated translation of coding DNA sequence (CDS)
entries submitted to the nucleotide databases. It acts as
the ‘pre-annotation’ source for SWISS-PROT. TrEMBL
is filtered to remove redundancy within itself and
between TrEMBL and SWISS-PROT, and is then subject
to a first-pass search for functional domains using the
tools described below. The current version of TrEMBL
(release 16) contains 489,620 sequences, an order of
magnitude larger than SWISS-PROT.

A complementary approach is to search against
databases of functional domains. Among the common-
ly used databases are PFAM51, a collection of HMM
profiles and alignments for common protein families.
The current release (6.1, March 2001) contains 2,727
protein family entries, and is searchable using the
HMMER software tool32. A typical PFAM entry is ‘TAZ
zinc finger’, the motif that allows the cAMP-response-
element-binding protein (CREB) to bind to other tran-
scription factors, such as p53, and to regulate the initia-
tion of transcription. Other databases commonly used
during automated protein annotation include the fol-
lowing: PRINTS52, a compendium of short protein
motifs that captures common protein folds and
domains; PROSITE53, a database of longer protein sig-
natures known as profiles; ProDom54, a collection of
protein domains derived from the PSI-BLAST proce-
dure50; the SMART curated collection of protein
domains55; and BLOCKS56, a database of conserved
protein regions and their multiple alignments.

The various protein family, domain and motif data-
bases are highly overlapping, but differ in their nomen-
clature, their search methods and their suitability for
diverse tasks. This makes it difficult to interpret the
results when a predicted protein hits entries in several of
the databases. Have they hit the same thing?

An important development in recent years has been
an intensive effort to integrate the protein signature data-
bases into the unified InterPro resource57. InterPro is a
cross-referencing system for equivalent entries in the
PFAM, PRINTS, PROSITE, ProDom, BLOCKS and
SMART databases. This resource allows genome annota-
tors to run a predicted protein against each of the mem-
ber databases, collect the matching domains and families,
and then translate each into its corresponding unique
InterPro entry. The most recent InterPro release (3.0,
March 2001) contains 3,591 entries that correspond to
2,628 protein families, 888 domains, and 75 repeats and
post-translational modification sites. Each InterPro entry
contains a brief description of the family or domain, a list
of SWISS-PROT and TrEMBL proteins that contain the
entry, literature references and outgoing links to the cor-
responding entries of the member databases.

The comparison of proteins between species is a rich
source of functional annotation. For example, if a well-
characterized yeast protein is known to be involved in
the initiation of DNA replication, then it is likely that a
protein predicted from the human genomic sequence
that is similar to the yeast protein will have the same
function. However, the nature of protein evolution
again lurks to ambush the unwary annotator. The
human gene might be directly descended from a com-
mon ancestor of the yeast gene, in which case it is called
an orthologue, or it might be descended from a dupli-
cated and diverged copy of the gene, in which case it is a
paralogue. In this case, it would be a mistake to conflate
the yeast with the human protein and assume that they
have the same functional role.

Although various techniques have been developed to
identify and cluster groups of orthologous proteins in
an automated fashion, for example the COG system49,
many predicted proteins evade unambiguous automat-
ed classification into an orthologous group. In practice,
what is typically done now is to classify predicted pro-
teins on the basis of functional domains, folds and
motifs, as well as by broad similarity to better-character-
ized proteins. The sorting out of protein phylogeny then
follows on as a slower research activity.

A typical protein annotation pipeline will search
for similarities using the BLASTP or PSI-BLAST
tools50 against several different databases of protein
sequences. Among the most valuable of the whole-
protein sequence collections are SWISS-PROT and
SWISS-PROT TrEMBL28. The former is a curated col-
lection of confirmed protein sequences (86,593 as of
release 39), which have been extensively annotated
and cross-referenced with other sequence and struc-
ture databases. SWISS-PROT annotations include
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Figure 3 | Segmental duplications. The Arabidopsis thaliana genome is dominated by large
regions of segmental duplication. The horizontal bars represent the five Arabidopsis
chromosomes (I–V). Coloured bands connect similar regions. In some cases, the duplications are
on the same chromosome, and in others, the duplications have been inverted (twisted bands).
Light grey regions are the nucleolus organizer regions, black represents the centromeres. Scale is
in megabases. (From Dirk Haase, MIPS Institute for Bioinformatics, GSF National Research
Centre for Environment and Health, Munich, Germany. Kindly provided by the MIPS Arabidopsis
thaliana database.)
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terms are added to the existing hierarchy. To give a
specific example of how this works, the enzyme phos-
phatidate cytidylyltransferase (EC 2.7.7.41), is
described by the GO function ‘phosphatidate cytidy-
lyltransferase’ (accession GO:0004605), the process
‘phospholipid biosynthesis’ (accession GO:0008654)
and the component ‘membrane fraction’
(GO:0005624).

Recently, other model organism databases have
joined the GO Consortium, including the Arabidopsis
Information Resource62, the C. elegans database
WormBase63 and the fission yeast database PomBase.
Each of these genome databases is annotating the con-
firmed and predicted genes in its corresponding species
using GO terms, allowing quick comparison and cross-
referencing between them. GO has also been adopted
by several groups for use in annotating human genes.
GO-term annotations are a feature of the InterPro
database mentioned earlier, and are used in the
Proteome databases and in the RefSeq database26.

Process-level annotation extends well beyond pure-
ly computational work. High-throughput techniques,
such as transposon-mediated insertional mutagenesis
(reviewed in REF. 64), microarray expression analysis65,
RNA INTERFERENCE66, direct assay of protein-expression
levels by mass spectroscopy67, screening for protein–
nucleotide interaction sites using systematic evolution
of ligands by exponential enrichment (SELEX)68 and
other techniques, green-fluorescent-protein-based
assays for determining the anatomic and temporal pat-
terns of gene expression69 and yeast two-hybrid
studies70, all provide vital clues to the role that genes
and proteins have in biological processes, and provide
a rich layer of annotation. Indeed, taken a step further,
conventional bench research and genome annotation
begin to merge. Each experiment adds an item of
information to our knowledge of biology, and this in
turn enhances our understanding of the genome
through the genes and proteins it touches.

The sociology of genome annotation
Annotation at the nucleotide, protein and process lev-
els form the basis of genome annotation. All that
remains is marshalling the technology, manpower and
computational resources to undertake the mammoth
task of annotating a new genome. Inevitably, this leads
our discussion away from the science of annotation to
its sociology.

Organizing genome annotation efforts. Genome anno-
tation generally follows one of several organizational
models: the factory, the museum, the cottage industry
and the party. Each model is better suited to a different
phase of the annotation task.

During the first phase of annotation, when the pri-
mary concern is to find genes, to map variations and to
identify other structural landmarks, the factory model
works best. This model, best exemplified by the
Ensembl project, relies on a high degree of automa-
tion. The Ensembl annotation system is built around a
cluster of 500 computers and a pipeline of annotation

InterPro has been used as the basis for several pro-
tein annotation projects for the yeast, worm, fruitfly,
Arabidopsis and human genomes. In these organisms,
between 40 and 50% of predicted proteins have a
match to at least one InterPro entry. More than half of
the predicted proteins in eukaryotes belong to novel
protein families, highlighting how much still needs to
be learned.

Process-level annotation
The last and, in many ways, most challenging part of
genome annotation is relating the genome to biologi-
cal processes. How do the building blocks of genes and
proteins relate to the cell cycle, cell death, embryogene-
sis, metabolism, and the maintenance of health and
disease? Functional annotation, as it is sometimes
called, has long been a feature of genome-sequence
analysis. The publication of each new genome is
inevitably accompanied by a table or a pie-chart show-
ing the distribution of proteins classified by function,
for example ‘metabolism’ and ‘cytoskeleton’. Until
recently, what had been lacking in these analyses was a
commonly accepted classification scheme that com-
bined the breadth required to describe biological func-
tions among diverse species with the specificity and
depth needed to distinguish a particular protein from
other members of its family. The lack of such a stan-
dard hampered the ability to relate genes that were
annotated by different research groups, particularly
when crossing species borders.

A breakthrough of sorts came two years ago, when
three model organism databases, the Saccharomyces
Genome Database58, FlyBase59 and the Mouse Genome
Database60, formed a consortium to create a Gene
Ontology (GO)61. The GO is a standard vocabulary for
describing the function of eukaryotic genes. It consists
of three subparts: molecular function, biological process
and cellular component. Molecular function terms
describe the tasks carried out by individual gene prod-
ucts, such as its enzymatic activity. Biological process
terms are used for broader biological goals, such as
meiosis. Cellular component terms describe genes in
terms of the subcellular structures they are localized to,
such as organelles, as well as the macromolecular com-
plexes they belong to, such as the ribosome.

The elegance of the GO is that it is organized as a
hierarchy of terms (or more accurately, as a DIRECTED

ACYCLIC GRAPH that allows a term to appear in several
places in the hierarchy). More general terms, such as
‘enzyme’, lead to more specific terms, such as ‘lyase’,
‘carbon–oxygen lyase’, ‘hydro-lyase’ and ‘threonine
dehydratase’. This flexibility allows genes to be anno-
tated to whatever level of specificity the current bio-
logical understanding allows. A protein that is clearly
an orthologue of a threonine dehydratase in another
species can be annotated with the most specific term,
whereas another protein that is clearly in the lyase
family, but the enzymatic activity of which has not
been confirmed, can be labelled with one of the more
generic terms. This design also allows the GO to
become increasingly ‘bushy’ as more specialized

DIRECTED ACYCLIC GRAPH

(DAG). A type of hierarchy
similar to the outline of a paper
in that it has headers,
subheaders and sub-
subheaders. The main
difference from a strict
hierarchy is that each topic in a
DAG is allowed to have more
than one parent topic.

RNA INTERFERENCE

A phenomenon in which the
expression of a gene is
temporarily inhibited when a
double-stranded
complementary RNA is
introduced into the organism.

SELEX

This is an in vitro selection
method in which very large
collections of oligonucleotides
can be screened for specific
functions.
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from the paper and integrate them with the database.
The result is a curated ‘best guess’ at the functional sig-
nificance of each gene in the genome, with ties back to
the literature whenever possible.

In addition to genome annotations, model organ-
ism databases curate information about special
aspects of the biology of their model. For example,
WormBase maintains the cell lineage and neuronal
wiring diagram of the nematode. FlyBase tracks the
many strains and mutants that make Drosophila a rich
experimental animal.

A variant on the museum theme is the cottage
industry, an organizational model adopted with suc-
cess by Proteome, Inc. (J. Gerrels, personal communi-
cation). In this model, the bulk of the curators work
part-time out of their homes or labs, and are recruited
from the ranks of postdoctoral fellows, graduate stu-
dents and faculty.

Then there is the party model, made famous by the
Drosophila annotation jamboree hosted by Celera and
the Berkeley Drosophila Genome Sequencing group71.
The party model puts leading biologists from the
community into the same room together with an
equal number of bioinformaticians and has them
spend a solid block of time (typically a week) annotat-
ing the genome. The biologists mine the genome for
their favourite gene families, and the bioinformati-
cians provide the tools and technical expertise to facil-
itate this. The jamboree is, in effect, a frontal charge
on the genome.

The jamboree model was more recently used at a
meeting of the FANTOM (Functional Annotation of
Mouse) Group at RIKEN in September 2000, to anno-
tate ~21,000 full-length mouse cDNA clones72.
However, other groups have not rushed to embrace
this organizational model, and whether annotation
jamborees are to become a permanent feature of the
genomics landscape, once the novelty of genomic
sequences wears off, remains to be seen.

Publishing and sharing annotations. Genomes are typi-
cally annotated by several groups. For example, the
human genome is undergoing active annotation by
Celera, Ensembl, the National Center for Biotechnology
Information, the computational biology group at Oak
Ridge National Laboratory and others.

The manifest strength of having several groups
involved is that researchers benefit from their diverse
approaches. The weakness is that a diversity of sources
for the annotations tends to fragment the information.
A researcher seeking to compare the annotations made
by one group to those of another must visit several dif-
ferent web sites and surmount various obstacles,
including incompatible user interfaces, coordinate sys-
tems, file formats and naming conventions. Without
extensive bioinformatics support, this task can be
nearly impossible to carry out on more than a few
genes at a time.

Fortunately, several positive trends indicate that
there is light at the end of the tunnel. One is in the
realm of file formats, in which a small number of

programs. A sequence entering the pipeline is run
through a suite of gene-prediction programs, various
nucleotide- and protein-based similarity searching
algorithms, and the protein-domain search programs
described above. The results are then collated by a
rule-based system into the gene predictions that are
published on the Ensembl Web site. This design leads
to a deliberately broad but shallow ‘baseline’ annota-
tion of the genome (FIG. 4). As a consequence, the bulk
of the Ensembl development team are engineers and
computer scientists.

In contrast to the factory is the museum model, typi-
cally seen in later phases of genome annotation, when
the emphasis shifts from finding the genes to interpret-
ing their functional roles. In the museum model, a set of
curators catalogue and classify the genome in a systemat-
ic fashion, finding and correcting mistakes made by the
gene-prediction and functional annotation algorithms.
In contrast to the earlier phase, much of this work is
done by hand, and much of it is orientated towards cap-
turing the current and past scientific literature on the
organism and integrating it with the genomic sequence.

The museum model is favoured by the model organ-
ism databases, and also applies to some extent to the
groups who study the relationship and phylogeny of
protein sequences. In a typical model organism data-
base, curators work through a certain number of
research papers each week, abstract the conclusions

Figure 4 | An example of genome annotation. The Ensembl web site is a rich source of
annotations on the human genome. This view shows the positions of predicted genes,
homologous regions of the mouse, single nucleotide polymorphisms, repetitive elements, and
the locations of clone ends and other structural landmarks. (From the Ensembl Web site, a
collaboration between EMBL-EBI and the Sanger Centre.)
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The differences between conventional biological
research and genome annotation have tended to mar-
ginalize the latter. Annotation is seen as an activity
that is set apart from biology, done by a special group
of people who are not exactly biologists. This is unfor-
tunate, because after the initial high-throughput stage,
genome annotation becomes crucially dependent on
conventional hypothesis-driven research. Tying the
experimental literature to the genome is a crucial step
in making genomic data useful to the general research
community.

The strength of curated databases is that human
curators can identify contradictions between papers,
and in some cases can catch and correct mistakes by
the original authors. However, the literature-driven
curation model is also inefficient because it requires
curators to transcribe conclusions from papers into
the database. Significant time is lost trying to fill in
crucial gaps in the paper, such as missing sequence
accession numbers and ambiguously identified genes,
and a curator is often called on to make a judgement
call on the basis of incomplete information. Most
curators dream about an ‘annotation ready’ paper in
which the relevant genes, proteins and processes are
identified in some sort of structured abstract.

As a community, we should consider ways to bring
genome annotation into the mainstream. Biologists
must become directly involved with annotation; data-
base curators must be afforded the same respect as
their counterparts on the bench. One step might be to
make the curation of a gene, gene family, or other set
of database records, something akin to writing an
invited review article, and provide its author with a
citation. Another step would be to incorporate princi-
ples of peer review into curated annotations. One also
could imagine using scientific meetings as an occasion
for the leading scientists in a field to review and com-
ment on the current status of an annotation database.

As the scientific literature becomes increasingly
electronic, and genome annotation becomes increas-
ingly like the literature, it is time to think about mar-
rying the two. This will accelerate the process of anno-
tation and help to clear the path from sequence to
biology. Indeed, although genome sequencing itself is
a highly specialized activity, genomic annotation is
something to which the entire life science community
can contribute.

standard genome annotation mark-up languages have
begun to gain general acceptance. One such language
is GAME, originally developed for use in the annota-
tion of the Drosophila sequence and now the underly-
ing data transfer language of the OPEN SOURCE Apollo
annotation editor, which is under development at the
Sanger Centre. GAME is notable for its rich syntax for
describing the experimental evidence that underlies
an annotation. Another is the distributed annotation
system (DAS), a lightweight annotation language
intended primarily for indexing and visualization.
FlyBase, Ensembl and WormBase all now make their
genome annotations available in this format.

A second positive trend is the development of a rich
set of open-source libraries of software tools for storing,
manipulating and visualizing genome annotations
(BioPerl 2001, BioPython 2001, BioJava2001 and
BioCORBA 2001). If, as seems increasingly likely, new
annotation projects adopt pre-existing tools rather than
creating their own, the current confusion of user inter-
face conventions, search tools and data formats, might
some day become a distant memory.

Bringing annotation into the mainstream. Genome
annotation is no different in many respects from
other aspects of molecular biology. It, too, involves
hypothesis creation, testing, refinement and publica-
tion. There are also obvious differences. Whereas the
experimental results from conventional research fit
easily in the size and format of a printed publication,
genome annotation studies are most suited for publi-
cation in electronically accessible databases.
Annotation sets are also commonly updated regularly,
giving them a fluidity that is uncharacteristic of con-
ventional publications. Annotation sets do not receive
citations in MedLine.

OPEN SOURCE

A type of software distribution
in which the source code (the
human-readable instructions)
are made freely available. The
Linux operating system is open
source. The Microsoft Windows
and Macintosh operating
systems are not.
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MZEF 
http://sciclio.cshl.org/genefinder/
Fgenes 
http://searchlauncher.bcm.tmc.edu:9331/gene-finder/Help/fgenes.html
HMMGene 
http://www.cbs.dtu.dk/services/HMMgene/
BLASTX 
ftp://ftp.ncbi.nlm.nih.gov/blast
RefSeq 
http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html
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http://www.ncbi.nlm.nih.gov/UniGene/
SWISS-PROT
http://www.ebi.ac.uk/swissprot/
Ensembl 
http://www.ensembl.org/
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http://www.genome.washington.edu/uwgc/analysistools/repeatmask.htm
C. elegans SNP Data
http://www.genome.wustl.edu/gsc/CEpolymorph/snp.shtml
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http://www.ncbi.nlm.nih.gov/COG/
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ftp://ftp.ncbi.nlm.nih.gov/blast
TrEMBL 
http://www.ebi.ac.uk/swissprot/
PFAM 
http://pfam.wustl.edu/
HMMER 
http://hmmer.wustl.edu/
PRINTS 
http://www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/PRINTS.html
TRANSFAC 
http://transfac.gbf.de/TRANSFAC/
PROSITE 
http://www.expasy.ch/prosite/
ProDom 
http://www.biochem.ucl.ac.uk/bsm/dbbrowser/jj/prodomsrchjj.html
PSI-BLAST 
ftp://ftp.ncbi.nlm.nih.gov/blast
SMART 
http://smart.embl-heidelberg.de/
BLOCKS 
http://www.blocks.fhcrc.org/
InterPro 
http://www.ebi.ac.uk/proteome/
Saccharomyces Genome Database 
http://genome-www.stanford.edu/Saccharomyces/
FlyBase 
http://flybase.bio.indiana.edu/
Mouse Genome Database 
http://www.informatics.jax.org/
Gene Ontology 
http://www.geneontology.org/
The Arabidopsis Information Resource
http://www.arabidopsis.org/
WormBase 
http://www.wormbase.org/
PomBase 
http://www.sanger.ac.uk/Projects/S_pombe/Pombase.shtml
Proteome, Inc.

• Now that many genome sequences are available, attention
is shifting towards developing and improving approaches
for genome annotation.

• Genome annotation can be classified into three levels: the
nucleotide, protein and process levels.

• Gene finding is a chief aspect of nucleotide-level annota-
tion. For complex genomes, the most successful methods
use a combination of ab initio gene prediction and
sequence comparison with expressed sequence databases
and other organisms. Nucleotide-level annotation also
allows the integration of genome sequence with other
genetic and physical maps of the genome.

• The principal aim of protein-level annotation is to assign
function to the products of the genome. Databases of pro-
tein sequences and functional domains and motifs are
powerful resources for this type of annotation.
Nevertheless, half of the predicted proteins in a new
genome sequence tend to have no obvious function.

• Understanding the function of genes and their products in
the context of cellular and organismal physiology is the
goal of process-level annotation. One of the obstacles to
this level of annotation has been the inconsistency of terms
used by different model systems. The Gene Ontology
Consortium is helping to solve this problem.

• There are several approaches to genome annotation: the
factory (reliance on automation), museum (manual cura-
tion), cottage industry (exemplified by Proteome, Inc.) and
party (the Celera Drosophila annotation jamboree).

• As more scientists come to rely on genome annotation, it
will become more important for the scientific community
as a whole to contribute to this continuing process.
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Links
ePCR 
http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi
BLASTN 
ftp://ftp.ncbi.nlm.nih.gov/blast
SSAHA 
http://www.sanger.ac.uk/Software/analysis/SSAHA/
GENSCAN 
http://genes.mit.edu/GENSCAN.html
Genie 
http://www.fruitfly.org/seq_tools/genie.html
GeneMarkHMM 
http://genemark.biology.gatech.edu/GeneMark/
Grail 
http://compbio.ornl.gov/Grail-1.3/
HEXON 
http://searchlauncher.bcm.tmc.edu:9331/gene-
finder/Help/hexon.html
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http://www.proteome.com/
FANTOM 
http://www.gsc.riken.go.jp/e/FANTOM/
Oak Ridge National Laboratory 
http://www.ornl.gov/
BioXML 
http://www.bioxml.org
DAS 
http://biodas.org
BioPerl 2001
http://www.bioperl.org
BioPython 2001
http://www.biopython.org/
BioJava 2001
http://www.biojava.org
BioCorba 2001
http://biocorba.org/

Fig.3 legend
MIPS Arabidopsis thaliana database
http://mips.gsf.de/proj/thal/db/gv/rv/rv_frame.html

Box 1
BLASTN, BLASTX, BLASTP, PSI-BLAST
http://www.ncbi.nlm.nih.gov/BLAST/
Ensembl
http://www.ensembl.org
ePCR
http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi
FlyBase
http://www.flybase.org/
GeneMarkHMM
http://genemark.biology.gatech.edu/GeneMark/
Genie
http://www.fruitfly.org/seq_tools/genie.html
GENSCAN
http://genes.mit.edu/GENSCAN.html
Grail
http://compbio.ornl.gov/Grail-1.3/
HMMER
http://hmmer.wustl.edu/
HMMGene
http://www.cbs.dtu.dk/services/HMMgene/
InterPro
http://www.ebi.ac.uk/proteome/
Proteome, Inc.
http://www.proteome.com/
RefSeq and LocusLink, NCBI
http://www.ncbi.nlm.nih.gov/
RepeatMasker
http://www.genome.washington.edu/uwgc/analysistools/repeatmask.htm
SSAHA
http://www.sanger.ac.uk/Software/analysis/SSAHA/
SWISSPROT and SWISSPROT-TrEMBL
http://www.ebi.ac.uk/swissprot/
UCSD Genome Browser
http://genome.ucsc.edu/


